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Abstract

This paper deals with the problem of mapping unknown small celestial bodies

while autonomously navigating in their proximity with an optical camera. A

Deep Reinforcement Learning (DRL) based planning policy is here proposed

to increase the surface mapping efficiency with a smart autonomous selection

of the images acquisition epochs. Two techniques are compared, Neural Fit-

ted Q (NFQ) and Deep Q Network (DQN), and the trained policies are tested

against benchmark policies over a wide range of different possible scenarios.

Then, the compatibility with an on-board application is successfully verified,

investigating the policy performance against navigation uncertainties.
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Lavagna)

Preprint submitted to Aerospace Science and Technology February 5, 2024



1. Introduction1

Intelligent mapping is a crucial but challenging capability for small ce-2

lestial bodies exploration. In fact, in proximity of small celestial bodies, the3

environment is extremely harsh and unknown: mission’s operations related4

to the mapping process entail articulated phases, from far approach to close5

surveys, to gradually characterizing the body with several mapping stages,6

employing different instruments and techniques. In particular, body imaging7

is fundamental for the body shape reconstruction, that is performed entirely8

on-ground with stereophotoclinometry (SPC) [1] or stereophotogrammetry9

(SPG) [2] techniques. The mapping process for shape reconstruction of an10

unknown body requires several iterations: the shape model is refined during11

the subsequent observations of the body, until a high resolution model is ob-12

tained. Such process entails the collection of a large amount of images, to be13

sent to ground and elaborated together with navigation data in an iterative14

manner.15

In order to achieve a good surface mapping, granting the maximum cover-16

age and the adequate viewing and illumination conditions, trajectory design17

is the first necessary step. In proximity of small bodies, the gravitational18

field can be highly irregular and perturbations like Solar Radiation Pressure,19

gravitational perturbation due to the Sun and comet outgassing may play20

a dominant role. In such highly perturbed environments, the design of an21

orbit suitable for carrying out the mapping process entails many challeng-22

ing aspects, related also to operational constraints and orbit maintenance,23

with several possible existing strategies. In the cases of binary asteroids24

systems, analyses dedicated to the orbit’s stability are made in the three25
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body problem accounting for the irregular shape of the body[3]. Families26

of stable orbits can be found in cases when the Solar Radiation Pressure is27

the dominant perturbation; these orbits do not require active control and28

therefore are inexpensive. In particular, three families of orbits are the most29

studied in literature: ecliptic, terminator and quasi-terminator orbits [4],30

[5], [6]. Terminator orbits lie in the plane perpendicular to the Sun and31

are highly stable. The main drawback of this solution is that the angle be-32

tween spacecraft and Sun is always 90◦, limiting the imaging opportunities.33

Quasi-terminator orbits are particularly good for global mapping campaigns34

because they are stable and also offer a good variation of Sun-relative ge-35

ometries. Nevertheless, their applicability is in practice limited, depending36

on mission time scales, length scales and minimum allowable orbit radius.37

Another approach is to find surrounding frozen orbits that also satisfy the38

repeating ground track condition, which is a feature particularly useful for39

the surface mapping [7]. Other strategies are based on actively controlled40

trajectories, including but not limited to the heliostationary hovering [8],41

body-fixed hovering flight [9], as well as flybys, conic-like trajectories or ping-42

pong orbits [10], [11]. In fact, when the body mass is small such strategies43

can still be actuated with reasonable costs and offer the possibility to easily44

obtain the desired Sun-spacecraft-body relative geometry. Drawbacks are45

that fuel cost may become important if the strategy is extended for a long46

time and that maneuvers require ground supervision. A completely different47

approach is hopping exploration over the surface [12]. As a consequence of48

the rich and challenging dynamical environment, mapping trajectories are49

strictly mission-dependent and related to a complex and tailored design per-50
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formed on-ground, including the planning of the orbital operations and the51

scheduling of data acquisition for mapping.52

While orbit selection is the first step for collecting adequate data, mapping53

is tightly coupled with navigation and planning of the exploration [1]. Today,54

ground support is necessary for navigation and mapping tasks, and a large55

human effort is required even 24/7 for proximity operations supervision and56

planning [13].57

The aim of this work is to make a step forward in the direction of au-58

tonomy. Autonomous explorations consists in intelligently acting in the un-59

known environment where the agent is moving. In terrestrial robotics, tech-60

niques for autonomous exploration have been developed for real applications:61

in particular, in Active SLAM (Simultaneous Localization And Mapping) the62

robot autonomously localizes itself, maps the environment and plans explo-63

ration, tasks that are tightly coupled [14],[15],[16]. Active SLAM has also64

been examined as being an instance of a Partially Observable Markov Deci-65

sion Process (POMDP)[17]. In this context, a good - even if not optimal -66

policy can be found by means of Deep Reinforcement Learning (DRL) algo-67

rithms: the use of a DRL technique allows finding a good solution policy of68

an otherwise computationally intractable problem [18]. Such algorithms ex-69

hibit well proven generalizing capabilities, that are fundamental to design a70

flexible policy capable of exploring environments with different and unknown71

characteristics [19], and of handling problems with partial observability [20].72

In particular, POMDPs can be tackled with DRL techniques such as Neural73

Fitted Q (NFQ) [21] and Deep Q Network (DQN) [22].74

In the space field, autonomous exploration has never been accomplished.75
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For systematic asteroid exploration, light and robust algorithms are required,76

capable to promptly react to unexpected conditions, reducing risks for such77

a delicate phase [23]. In [24], supervised machine learning is applied to78

estimate parameters for optimal asteroid transfer trajectories. Recently, the79

general problem of exploration has been framed as a POMDP, in analogy80

to terrestrial active SLAM. In [25] the POMDP is reduced to completely81

observable for designing an orbit selection policy. In [26] the POMDP is82

tackled using DRL, overcoming the simplifications in [25] and proposing a83

direct maneuvering policy, which can be risky for an on-board integration.84

The focus of this work is on on-board autonomous decision-making dur-85

ing the mapping process for shape reconstruction. Autonomous operations86

would reduce the burden of routine navigational support and communication87

requirements on network services, thus decreasing the mission cost. Auton-88

omy is desirable also to maximize the mission science return (high value89

data), enabling opportunistic science and real-time re-planning, otherwise90

impossible because of communications delays. The margin for improvement91

for autonomy is in first place related to the autonomous scheduling of im-92

ages acquisition epochs. Nowadays, images acquisition policy is established93

on ground during operations [13]. Hundreds of thousands of images are col-94

lected during a mapping process. This work proposes a general approach,95

to be applied notwithstanding the mission orbit strategy and the asteroid96

body shape, accounting for autonomy challenges as the limited computa-97

tional resources and data storage available on-board. DRL is the chosen98

method, since it offers both the advantages of a light implementation and99

generalizing capabilities. The main contribution of this work is the design100
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and development of a DRL-based policy for autonomous decision making of101

the choosing image acquisition epochs, that increases the efficiency of as-102

teroid mapping and enhances the shape model reconstruction. The actual103

benefits for the mapping process are evaluated by comparison between the104

DRL policy and benchmark policies. The efficiency of the proposed method105

is evaluated with performance indexes, and its applicability in a real oper-106

ational scenario with navigation uncertainties is studied. Some preliminary107

work has been shown in [27], where the method benefits on body shape recon-108

struction image processing algorithms have been analysed by reconstructing109

the small body shape with the simulated collected images.110

The paper is structured as follows. In Section 2 a description of the ex-111

ploration planning problem in terms of a POMDP is provided, along with112

the adoption of DRL methods for its solution. In Section 3 the proposed113

DRL approach for images collection optimization during the body mapping114

operations is presented. Then, Section 4 deals with the training of the DRL115

policies. In Section 5 the presented results show a successful policy obtained116

for images selection, and in Section 6 the policy robustness and computa-117

tional cost are evaluated, proving to be suitable for an on-board application.118

Finally, in Section 7 conclusions are drawn.119

2. Autonomous Exploration Planning framework120

This section deals with the problem of planning under uncertainty, pro-121

viding the general framework under which small bodies autonomous mapping122

falls. In the robotics field, autonomous exploration of an unknown environ-123

ment is typically formulated with an active SLAM approach, coupling the124
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tasks of mapping, localization and planning. Active SLAM can be seen as an125

instance of POMDPs. The mathematical formulation of POMDPs is briefly126

introduced and the active SLAM problem is presented as a general model127

for robotic exploration. Finally, the adopted solution approach with DRL128

algorithms is detailed.129

2.1. Partially Observable Markov Decision Processes130

Markov Decision Processes (MDP) are based on Markov chains, i.e. stochas-131

tic processes with no memory. This means that the process randomly evolves132

from one state sk to another sk+1 with a transition probability that depends133

only on the pair (sk, sk+1) and not on previous states. The decision-maker134

(called agent) can choose between several possible actions. The transition135

probability to the next state depends on the chosen action and can be asso-136

ciated to a scalar reward. The agent goal is to maximize the rewards over137

time, with an optimal policy.138

The absence of memory in MDPs is defined by the Markov property :139

the next state depends only on the current state and action and not on140

past actions and states, hence the future is conditionally independent of141

the past, given the present state. This property is essential to many solution142

algorithms [28]. In real applications, the Markov property requirement can be143

difficult to meet: state information must be rich enough so that the observed144

state transition does not depend on additional historical information.145

When the state is only partially observable, the problem can be defined146

as a POMDP. In this case the agent can have only a partial knowledge of the147

environment: the state is not observable but a signal stochastically related148

to it is. Hence a POMDP can be described as a tuple 〈S,A,R, T ,Ω,O〉,149
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where: S is the state space, A is the action space, r : S × A → R is the150

immediate reward (often named also cost function), and Ω is the space of151

possible observations. A transition probability T (sk+1| ak, sk) governs the152

process by mapping a state-action pair to a probability distribution of states153

at the next time instant. O(ok+1| ak, sk+1) is the probability of making154

observation ok+1 at the next time step, given action ak that leads to state155

sk+1.156

In the majority of applications POMDPs are computational intractable,157

therefore it is better to reduce them to find a computationally tractable solu-158

tion. A POMDP can be reduced to a MDP including the agent history h as159

internal state. The history is composed by all past actions and observations,160

hence history at time step k will be hk =< a0, o1, a1, ..., ak−1, ok >. The161

problem is usually tackled with a less direct approach known as belief-space162

MDP. This formulation is a tuple 〈B,A,RB, τ〉, where:163

• B is the belief space, with belief bk = p(sk|hk) equal to the probability164

of being in state s after history h.165

• A is the action space as in the original POMDP.166

• rB is the expected immediate reward B ×A → RB167

• τ(bk+1| ak, bk) is the belief transition function, i.e. the probability of168

reaching the new belief bk+1, starting from bk and performing action169

ak.170

The optimal policy maximizes the reward in the long term, assuming to act171

according to that policy:172
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π? = argmax
π

Eπ

[
∞∑
k=0

γkR(ak, bk)

]
(1)

This is called also infinite horizon problem, since the reward is maximized173

over the entire agent lifetime, considering a discount factor γ ∈ [0, 1].174

2.2. Active Simultaneous Localization And Mapping175

SLAM consists in estimating a map of an unknown environment and176

simultaneously localizing - in the same environment - the moving object: in-177

deed, localization is the task of estimating the robot position and orientation178

(pose) while moving in the environment [29, 30, 31].179

SLAM problem can be formulated as follows. The environment map at180

time step k is made of a set of n landmarks lk = {l1, l2, ... , ln}, where181

li is the position vector of the i-th landmark. The robot pose xk changes182

while the robot moves under the control uk and can be estimated through183

observations of landmarks location zk.184

Active SLAM adds to the SLAM problem the planning task [14, 15, 17].185

POMDP provides a framework to investigate the effects of actions and ob-186

servations on the agent’s environment perception, thus allowing designing187

policies that optimize the agent’s interaction with the environment in some188

of its aspects.189

Since the environment is stochastic, the problem can be described in prob-190

abilistic terms according to the belief-space MDP formulation presented in191

the previous section 2.1. The state vector is composed by robot pose and192

landmark locations sk = (xk, lk) and its belief is bk = p(sk|z0:k). The ac-193

tions that the agent can take coincide with the control ak = uk. Current194
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belief is estimated from past control, past belief, and current observations:195

bk+1 = τ(uk,bk, zk+1). The reward is usually modeled in terms of an ob-196

jective function. For instance, a planner can have multiple objectives like197

maximizing either coverage or map accuracy while minimizing navigation198

duration, motion cost or resources utilization. Several criteria exist to for-199

mulate the objective function to be optimized by the planning policy [32, 15].200

In particular, the exploration problem consists in choosing the sensing tra-201

jectory to obtain the best map.202

2.3. Deep Reinforcement Learning203

POMDPs are usually computationally intractable. Hence, a reduction204

of state, action and policy spaces is needed. An Artificial Neural Network205

(ANN) is used to approximate the Q-value, i.e. the expected return over206

time. Therefore the optimal policy is the one that maximizes the Q-value:207

π? = argmax
π

Qπ(ak, sk|θπ) (2)

where θπ are the ANN weights and biases. Different approaches can be ap-208

plied to formulate the problem with a neural network. This work investigates209

two alternatives, NFQ and DQN.210

The NFQ algorithm scheme is reported in Fig. 1. NFQ sees its major211

difficulty in the training data collection: the problem must be suited to be212

solved with a random policy that allows the agent-environment interaction213

and the collection of the state-action-state triples. If a random policy poorly214

performs the environment exploration, the net will be trained only on a subset215

of the different situations it could encounter. This approach is model-free,216

stable, data efficient and simple to implement.217
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Figure 1: NFQ scheme.

Figure 2: DQN scheme.

The DQN algorithm scheme is reported in Fig. 2. Experiences are col-218

lected playing many episodes, during which actions are chosen according to219

an ε-greedy policy. This means that with probability ε the action is random220

and with probability (1− ε) the action is the one that maximizes the current221

Q-function. The choice of the greedy parameter can be critical to correctly222

collect transitions, as also exploration of unknown regions of the state space223

is important.224

3. Images collection planning with Deep Reinforcement Learning225

The autonomous DRL-based decision making proposed approach is pre-226

sented in this section. Then, the detailed definition of the POMDP reduced227
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Figure 3: Autonomous DRL-based planning and shape reconstruction validation method.

spaces is provided, in terms of reward R, belief state space B and action228

space A.229

3.1. Proposed architecture230

This paper develops a method to autonomously plan the timing of ob-231

servations during the mapping of an unknown small body, with particular232

application to imaging for SPC. The goal is to define a policy that improves233

mapping quality, while both limiting the amount of images to downlink and234

fastening the mapping process. The planning framework is defined as a235

POMDP, proposing a novel problem architecture focused on data collection.236

DRL is exploited to design the planning policies. A scheme of the proposed237

architecture for small bodies imaging and shape reconstruction is schema-238

tized in Fig. 3.239

Algorithm architecture is designed to be mission-independent and com-240

putationally light to cope with limited on board resources. In particular, the241

algorithm needs information on the camera Field of View (FoV), the relative242

pose between camera and the target, the illumination conditions and the243

body low resolution polyhedral shape model, which is already available dur-244
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ing the considered mission phases. Then, data are pre-processed along with245

history information of already collected images. The next block is related246

with the autonomous decision making: if the current observation epoch is247

worth, then the image is taken and actions are recorded. The decision making248

problem is solved by means of DRL, dealing with the challenge of optimizing249

images collection for small bodies shape reconstruction. The spacecraft acts250

according to a policy for next best step selection, i.e. for selecting the most251

proper time instant for collecting a new image, based on the relative pose252

between camera and body and on the illumination conditions.253

3.2. Reward definition254

In this section the reward space R is defined. SPC benefits from images255

with large illumination variation and small viewing angle variation. Scores256

related to the photometric angles (see Fig 4) can be defined to assess the257

quality of the taken pictures for the shape reconstruction process [25],[27].258

The overall score Si associated to the i-th facet of the polyhedral shape259

model is given by the weighted sum of five different contributions:260

Si = w1S
i
i + w2S

i
e + w3S

i
∆e + w4S

i
∆α + w5S

i
∆β (3)

where Sii is the incidence score, Sie the emission one, Si∆e the emission vari-261

ation score and Si∆α and Si∆β the solar and spacecraft azimuth angle scores.262

Such scores are dependent on the spacecraft position and orientation, which263

also determines which facets are in view. The mapping resolution is not con-264

sidered here, assuming to apply the policy at each mapping stage, thus not265

significantly varying the distance from the body. They are defined as follows,266

starting from previous studies on the SPC mapping quality [10], [25].267
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Figure 4: Photometric angles: emission angle e, phase angle φ, inclination angle i.

Incidence score. The incidence angle i should be kept between 20◦ − 60◦ to

avoid shadows and excessive brightness, that won’t allow the extraction of

useful information. Let’s define the incidence score Sii :

si =



1 if 20◦ ≤ i ≤ 60◦

1
10
i− 1 if 10◦ ≤ i ≤ 20◦

− 1
10
i+ 7 if 60◦ ≤ i ≤ 70◦

0 otherwise

(4)

Sii = µj(si) (5)

where µj is the mean performed over all the nimg taken pictures that contain

the facet.

µj(x) =
1

nimg

nimg∑
j=1

(xj) (6)
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Emission score. The emission angle should be kept between 10◦−50◦. Hence

in a similar manner the emission score Sie is defined as follows:

se =



1 if 10◦ ≤ e ≤ 50◦

1
5
e− 1 if 5◦ ≤ e ≤ 10◦

− 1
10
e+ 6 if 50◦ ≤ e ≤ 60◦

0 otherwise

(7)

Sie = µj(se) (8)

Emission variation score. Also, a large variation of emission angles is con-

sidered beneficial, therefore the emission variation score is:

Si∆e = µj

(
max
k

2∆ejk
π

)
(9)

where ∆ejk = |ej − ek|. Hence for each emission angle ej under which the268

i-th facet is seen, the maximum difference between the considered angle ej269

and all the other angles ek under which the facets was observed is computed.270

Then, all the maximum differences are normalized of π
2
, i.e. the maximum271

possible emission variation, and the mean is performed.272

Solar and spacecraft azimuth score. Finally, the variation of solar azimuth

angles α should be large and the one of spacecraft azimuth angles β small.

The respective scores are computed in a similar fashion.

Si∆α = µj

(
max
k

∆αjk
π

)
(10)

Si∆β = 1− µj

(
max
k

∆βjk
π

)
(11)

15



Please note that in this case the normalizing value is π.273

According to the images history, the facet mapping index mi is defined274

for the i-th facet:275

mi = Si min
(

1,
nimg
Nimg

)
(12)

where nimg and Nimg are respectively the number of taken images and the276

number of ideally necessary images (equal to at last 3 for SPC). The index277

mi can assume values in the interval [0, 1] and in particular the maximum278

value represents an ideal perfect mapping.279

The immediate reward depends on both states and actions:280

rk = rk(sk, ak) (13)

If no action is taken the reward is null. Whenever an image is collected281

in a forbidden state s ∈ S−, a negative reward equal to -1 is returned to282

the agent and the image is not accounted for in the successive mapping.283

Forbidden states correspond to situations in which either the image is in284

complete shadow or the ideal number of images is overcome, occurrence which285

might potentially cause problems in on-board data storage. The ultimate286

goal is to maximize the mapping index, therefore if the picture is taken in287

allowed states the reward is:288

r̃ = µm

(
mi
k −mi

k−1

mi
k

)
(14)

where mi
k is the mapping index of facet i at time k and µm stands for the289

mean over all the facets in the current frame.290
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Summarizing, the overall reward is:

rk =


−1 if ak = 1 and sk ∈ S−

0 if ak = 0

r̃ otherwise

(15)

If the agent immediately takes all photos allowed to be sent on ground, along291

the successive time steps it will be forced to accept either a zero or a negative292

reward. On the other hand, the long term reward will be higher if images293

are collected only when it is worth, hence smoothly distributed in time.294

3.3. Action space295

In this section the action space A is defined. The agent interacts with

the environment only by choosing its sensing locations, hence by collecting

images, without controlling its relative pose with respect to the body surface.

The action at time step k is boolean:

ak =

0 if no picture is taken

1 otherwise

(16)

The number η of pictures to be ideally taken in a certain storage time Tstorage296

is fixed. After this storage time images are downlinked and therefore the297

memory is empty again. The discrete time steps at which an action can298

be taken are defined in number equal to the ideal number of images times299

a control parameter ∆c. Ideally with a large control parameter the final300

performance would be better, but the number of decisions to be taken would301

be too high, entailing a longer and more difficult learning process. Hence a302

trade off between performance and learning must be done for the choice of303

∆c.304
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3.4. State space305

In this section the belief state space B is defined. States have been de-306

signed to synthesize only the information necessary and useful for decision307

making. In particular, the state is constituted by the memory state, map308

state and angles state. A total of 12 states are defined.309

Memory state. The memory state provides information on the time lapse and310

number of collected images. The idea is that in a certain time interval Tstorage311

pictures can be stored in the on-board memory before being sent to ground.312

The ideal number of images to communicate at every time interval is η. In313

particular, the percentage of time spent in the current storage interval and314

the number of pictures taken n with respect to the ideal number η are fed to315

the net. The parameters Tstorage and η can be tuned depending on mission316

constraints without affecting the algorithm. These inputs help in evaluating317

how the collection of a new image would impact on data storage.318

Map state. The map state provides general information on the mapping cam-319

paign advancement. The fraction of area in light of the surface portion in320

view, which relates to the area percentage whose knowledge will actually be321

improved by a new picture, can be roughly computed as the ratio between322

the image facets in light and the total number of facets visible in the image.323

The map state also includes the mean of the mapping index and its standard324

deviation over the surface in view and the same quantities computed over325

the whole body. These data are useful to make a decision on whether the326

exploration of the area under exam is worth from the coverage point of view.327
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Angles state. The angles state gives local information about photometric328

angles under which the facets in view and in light are seen at the specific329

epoch. In particular, the angle state includes inclination and emission scores330

mean, over all the facets in view and in light for the angles of the current time331

instant only. While the other states are the facets mean of the maximum332

variation of current Sun azimuth, spacecraft azimuth and emission angles333

with respect to the angles of already take pictures. These inputs concur in334

evaluating the possible improvement of SPC for what concerns stereo angles335

and illumination conditions.336

The use of statistical quantities (mean and standard deviation) is the only337

solution that allows keeping constant the number of observed states despite338

of the change of number of facets in view. Moreover, to understand how the339

mapping campaign is proceeding, the whole history of past actions should be340

part of the states as well. Of course to include the whole history in the states341

observation is unfeasible, but anyway the POMDP is reduced by making342

part of the history observable. The POMDP is also simplified by assuming343

the belief equal to the actual state bk ' sk. As a future improvement to344

overcome the drawbacks of classical DQN, the prioritized experience reply345

could be employed as in [33].346

3.5. Neural Network architecture347

The architecture of the ANN used to approximate the Q-value function348

is kept light to achieve a low on-board computational time: a multi-layer349

perceptron with 2 hidden layers of 10 neurons each is adopted. The network350

graph is shown in Fig. 5. Such network can be defined a Deep Neural Network351

[34].352
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Figure 5: Neural Network architecture.

The ANN architecture is the same for both NFQ and DQN and is kept353

as simple as possible, with a 13 elements input vector and a scalar output, in354

accordance to the necessities of the planning model. Weights and biases of the355

ANN are changed during the learning process with resilient back-propagation356

(RPROP) steps [35].357

4. DRL policy training358

In this section the learning environment is described and the training359

results are shown.360

4.1. Training environment361

To properly define the environment with which the agent interacts during362

the learning is fundamental for the learning success. The set of experiences363

should be complete, i.e. it should be an exhaustive collection of all possible364
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cases that the agent may encounter. Please note that the state is defined to365

be independent from the asteroid, orbit and camera characteristics. There-366

fore, a complete training set is not a set built considering several asteroids367

and orbits, but a set of examples that sufficiently explores the state space368

and includes relevant experiences to get to the final goal. Ideally it should369

contain a whole mapping stage, from the beginning to the end, in which all370

pictures are taken with the same instrument and at about a constant distance371

from the asteroid. Since the resolution of the maps to be created is finer than372

that already achieved at larger distances, the stage can be considered inde-373

pendent from past stages for what concerns the coverage of the asteroid. In374

a few words, the learning environment should allow the agent to collect both375

experiences in prohibited states S−, to identify them and avoid them in the376

future, and to make very successful actions for mapping. For these reasons,377

to enhance the learning process, a somewhat unrealistic situation is selected378

as learning environment:379

• Non-keplerian orbit around asteroid Eros in Figure 6.380

• Camera FoV of 10◦.381

Such scenario allows a great variation of the spacecraft-Sun-body relative382

geometry.383

The chosen asteroid is Eros being one of the few shape models publicly384

available in databases and because its elongated shape allows imaging differ-385

ent percentages of the body surface, keeping the distance fixed. In fact, the386

percentage of surface in view varies between 6.4 % and 0.7 % with a mean of387

the 2.4 % along the orbit.388
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(a) Spacecraft position - body-fixed frame. (b) Sun direction - body-fixed frame.

Figure 6: Spacecraft and Sun position in training environment.

The trajectory has been obtained considering spherical harmonics pertur-389

bations, starting from an initial condition corresponding to osculating orbital390

parameters of null eccentricity, 45◦ inclination and radius twice the asteroid391

maximum one. For what concerns the body illumination, some areas remains392

always in shadow, as it can be seen from Sun direction in the body-fixed frame393

shown in Figure 6. The reason is that the body spin axis inclination with394

respect to the ecliptic north is larger than Eros orbit inclination. This allows395

to frequently collect also negative experiences for the body mapping, which396

need to be learned and avoided.397

The training simulation environment also assumes that the ideal number398

of images during one episode is 500, with an ideal frequency of 1 picture per399

hour. The data downlink and control parameters are:400

• Tstorage = 10 h401

• η = 10402
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(a) Training Mean Square Error for NFQ

network.

(b) Training Mean Square Error for DQN

network.

Figure 7: DRL policies learning process.

• ∆c = 3403

In practice, the orbit is discretized so that the number of points in the storage404

time is three times the number of photos allowed. Hence the control interval405

between one action and the next is quite coarse. This interval can be refined406

in future works.407

4.2. Learning process408

RPROP is selected as training algorithm because of it robustness. In409

particular, batch learning is preferred to incremental learning, because the410

training set has a low dimension (500 ideal images and ∆c = 3 lead to a total411

number of 1500 experiences). Input and output scaling is performed on the412

whole experiences set.413

NFQ learning. The Mean Square Error between network outputs and targets414

is reported for one training iteration in Figure 7a, where one epoch corre-415

sponds to a weights update step on the entire set of experiences. As it can416
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be observed, the Mean Square Error smoothly decreases until the validation417

check is met, i.e. the validation error stops decreasing. As expected, the418

training error is lower than the validation error.419

DQN learning. The Mean Square Error evolution during the learning is re-420

ported in Figures 7b. In this case one epoch corresponds to one RPROP step421

on the mini-batch. As it can be noticed, Mean Square Error decreases but it422

is much less stable with respect to the NFQ case. This is a consequence of423

the different batch sizes used in the two algorithms.424

5. DRL policy performance425

In this section, the performance of the DRL policy, trained with DQN426

and NFQ methods, is presented. The two DRL methods are compared to427

benchmark policies in different mission scenarios to verify their generalizing428

capability, which is of great importance when exploring an unknown envi-429

ronment.430

5.1. Benchmarks and performance metrics definition431

Benchmarks. A first numerical validation is performed by comparing the432

DRL-based algorithm with two different simple benchmarks: a policy that433

takes pictures at regular intervals (UNI) and another that randomly selects434

the image acquisition instants (RAND). UNI takes a picture every ∆c time435

steps. For the RAND strategy if nk > nk,UNI the image is discarded and all436

presented results are the mean over 100 runs. For UNI, NFQ, and DQN only437

1 run is needed, since they are deterministic policies.438
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Performance indexes. Often DRL results are compared just with the nu-439

merical final score obtained during the episode. In such a way however, to440

critically analyze how policies actually behave is hard. Being the design and441

learning procedure highly based on engineering judgment, test results are442

presented not with final reward scores, but by means of some complemen-443

tary indexes that facilitate the performance understanding:444

1. Final number of collected images In, (the lower the better).445

2. Final mapping index Imap = µM(mi
kend

), where µM is the mean over all446

the body facets (the higher value the better).447

3. Integral mapping index over the campaign Isum = 1
∆c

∑
k µM(mi

k), (the448

higher the better).449

Such parameters quickly allow verifying whether the modeled reward actually450

leads to an improvement of the proposed tasks: data reduction and mapping451

enhancement and fastening.452

5.2. Test cases definition453

Test cases have been chosen to cover all the relevant aspects for the algo-454

rithm application. In particular, four different bodies are considered: Eros,455

on which the training has been performed, Itokawa, that presents an elon-456

gated shape, Bennu, with diamond shape, and 67P-CG, with two-lobes shape.457

Small bodies are assumed on Keplerian orbits around the Sun, with constant458

spin axis orientation and rotational period. The camera is assumed to have459

a conical FoV of 3◦ and a shape model of 1000 facets is considered available460

on-board. The length of each test episode is set to 1500 time steps, with461

∆c = 3, and an ideal final images number of 1500/∆c = 500.462

25



Sensitivity analysis run for the above mentioned small bodies by varying463

the following quantities:464

• The distance from the body, that affects both relative dynamics and465

percentage of surface in the camera FoV. In particular, the quantity466

here referred to is the interest ratio, i.e. the ratio between distance467

from the body center and maximum body radius.468

• The body rotational period T , that influences illumination conditions469

variation and again relative pose.470

• The orbit inclination i, that changes the surface portion object of the471

mapping.472

5.3. Detailed results for 67P test case473

For the sake of brevity, results are presented in this section for the 67P474

scenario only, among the ones above mentioned. In fact, it well represents475

challenges linked to an extremely irregular body shape, as self-shadowing476

and self-occlusion, and it can be assumed as a worst-case example for the477

achieved performances. Please note that the presented case differs from the478

case exploited for the learning process.479

The basic simulation scenario for comet 67P has the following parameters:480

• Rotational period Trot = 12.4 h.481

• Circular polar orbit, with interest ratio equal to 6.482

• Percentage of surface in view in the range 0.3 % to 2.9 %.483
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(a) Mapping performance (b) Number of collected images

Figure 8: Polar orbit at 67P. Comparison of the different strategies.

The evolution of the mapping quality index and the number of collected484

images are respectively shown in Fig. 8 for a circular polar orbit at 67P, with485

interest ratio 6. For both NFQ and DQN, not only the amount of collected486

data is equal or less with respect to RAND and UNI strategy, but also the487

mapping index is higher.488

The final mapping index is shown for NFQ, DQN and UNI strategies in489

Fig. 9. In this case the mapping is hindered by Sun illumination but also by490

the significant self-shadowing and self-occlusion.491

5.4. Sensitivity analysis results492

Detailed results of the sensitivity analysis are here reported for the Eros493

and 67P scenarios, respectively in Table 1 and Table 2. For most test cases494

in the four bodies scenarios DQN proves to be the best policy. In some cases,495

Imap has a similar value for the three strategies, but the goal is achieved faster496

by NFQ and DQN, that have a larger Isum. A general trend observed is that497

with NFQ the number of collected pictures is lower than DQN and UNI, but498
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Table 1: Eros, sensitivity analysis.

i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 66.87 500 0.22 69.10 500 0.22 69.43

NFQ 430 0.25 87.64 431 0.26 87.58 404 0.26 86.50

DQN 498 0.24 83.30 493 0.26 84.91 434 0.29 89.67

Interest Ratio = 6 Interest Ratio = 8 Interest Ratio = 10

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.33 114.38 500 0.38 142.34 500 0.41 160.01

NFQ 381 0.33 120.64 377 0.37 143.31 488 0.39 150.86

DQN 317 0.37 135.90 320 0.38 151.13 326 0.39 159.87

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 57.78 500 0.22 61.80 500 0.20 58.97

NFQ 409 0.25 79.00 402 0.25 84.18 415 0.25 74.06

DQN 459 0.28 81.41 446 0.29 86.20 469 0.25 71.76
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(a) NFQ (b) DQN (c) UNI

(d) NFQ (e) DQN (f) UNI

Figure 9: 67P, facets final mapping index.

with DQN a larger mapping performance is achieved, sometimes even with499

a lower number of pictures.500

As visible in Table 1 and Table 2, by increasing the interest ratio the501

two DRL strategies become less efficient: even if In is reduced, Imap and502

Isum are comparable to the UNI strategy. This trend has been observed for503

all considered small bodies and may be due to two reasons: the percentage504

of surface in view is out of training interval and of typical mission values;505

or when a large portion of the body is imaged it is more difficult to have506

control on the viewing conditions of all facets in the frame. In fact 1 % of the507

surface means to consider about 10 facets, while 10 % corresponds to 100:508

very different viewing conditions may be present in the same picture. Please509

note that in any case the number of pictures for DQN and NFQ is largely510
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Table 2: 67P-CG, sensitivity analysis.

i = 30 deg i = 60 deg i = 90 deg

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.27 79.67 500 0.27 72.15 500 0.25 67.01

NFQ 356 0.28 95.70 342 0.30 95.24 365 0.29 91.55

DQN 476 0.30 94.65 417 0.36 112.69 385 0.36 111.34

Interest Ratio = 8 Interest Ratio = 10 Interest Ratio = 12

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.33 102.68 500 0.41 125.66 500 0.40 130.36

NFQ 310 0.32 114.30 290 0.40 126.50 279 0.40 126.52

DQN 285 0.38 134.45 285 0.41 143.01 314 0.41 133.63

T = 2 h T = 5 h T = 12 h

In Imap Isum In Imap Isum In Imap Isum

UNI 500 0.21 50.94 500 0.25 62.84 500 0.24 65.59

NFQ 355 0.31 87.28 354 0.29 93.19 379 0.26 84.03

DQN 398 0.36 98.93 381 0.36 110.49 427 0.28 95.00

reduced in spite of a small difference in Imap and Isum.511

DRL-policy has been trained in a completely different scenario, concern-512

ing both body shape and orbit, and has been designed to be easily employed513

into a wide variety of different mission scenarios. Therefore, an optimal514

behaviour is actually not expected to be reached, even is a significant en-515

hancement in scientific mapping and data collected, compared to simpler516

acquisition strategies, is sought.517

Sensitivity analyses results show that the proposed solutions are capable518

to deal with far-off different scenarios and outperform the UNI and RAND519

benchmarks. The presented algorithm can work independently of the relative520
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dynamics between spacecraft and small body, proving to be highly flexible: in521

all considered small bodies scenarios the policy for selection of the observation522

times actually enhances the efficiency of data collection.523

6. Compatibility with on-board application524

The applicability of the proposed architecture for an on-board application525

is analysed in this Section. In particular, two relevant aspects are studied: the526

robustness of the DRL policy to uncertain inputs coming form the on-board527

navigation system, and the computational effort required by the architecture.528

6.1. DRL policy robustness to uncertainty529

During close proximity operations, the on-board knowledge of the relative530

pose with respect to the body surface is limited by the navigation accuracy.531

This aspect directly influences the inputs to the DRL-policy and may lead532

to a behaviour different from the expected, since uncertain inputs were not533

considered at all during the training. For these reasons, some tests are per-534

formed on the DRL-policy, introducing errors in the knowledge of the relative535

pose of the spacecraft.536

The considered testing scenario consists in a quasi-Keplerian circular or-537

bit at asteroid Bennu, at 2.5 km distance and with an inclination of 45°. The538

assumed camera has a FoV of 10°. In particular, 6 tests are performed con-539

sidering an increasing uncertainty separately for position and pointing, which540

are perturbed by additive Gaussian white noise with standard deviation σ.541

Finally, test 7 considers both effects, with the uncertainty expected for the542

study case, i.e. 100 m for the relative position and 1° for the pointing. To543
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have a fair term of comparison, in each simulation the spacecraft ground-544

truth pointing and position history is the same and only the state belief545

is different. Each test has been run with 100 simulations; mean value and546

standard deviation of the mapping index and acquired frames are reported547

in Table 3. The mapping index is reported as a percentage with respect548

to the complete mapping, which is impossible to achieve, and the acquired549

frames are reported as percentage of the imposed maximum capability of550

data storage and communication.551

Table 3: DRL-policy performance with uncertainties on relative state.

Test Position Pointing Mapping Frames

ID σ [m] σ [◦] index [%] (σ) acquired [-] (σ)

ALL 0 0 48.3 (-) 150 (-)

0 0 0 45.9 (-) 66 (-)

1 100 0 43.9 (1.4) 68 (4)

2 250 0 37.1 (4.7) 67 (5)

3 500 0 20.9 (5.7) 70 (3)

4 0 1 45.8 (0.5) 71 (5)

5 0 3 47.4 (0.3) 82 (7)

6 0 5 47.9 (0.4) 92 (8)

7 100 1 44.1 (0.1) 70 (4)

Table 3 shows that the DRL-policy is quite robust to both kinds of uncer-552

tainties and still achieves a good performance within the typical navigation553
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(a) Mapping index (b) Acquired frames

Figure 10: Bennu, DQN performance without uncertainties (test 0).

uncertainties (test #7), but the performance decreases when the state belief554

is very far from the real state.555

Test ALL is performed to assess the maximum ideally achievable mapping556

without any constraint on the data storage (UNI policy applied with high557

sampling frequency), while test #0 assesses the behaviour of the DRL policy558

with a perfect knowledge of the state (see Fig. 10).559

Tests #1-3 show that the number of frames acquired is comparable to560

the test-0, but the actual mapping performance decreases with a higher po-561

sition uncertainty. Since the DRL-policy assumes to point Bennu centre of562

mass from the belief of its relative position, the information regarding to563

the illumination of the surface in view is affected, leading to a lower quality564

mapping.565

Tests #4-6 highlight a different behaviour of the net: a larger number566

of images is collected, increasing the mapping quality thanks to the larger567

amount of data. In test #6 almost all the images are collected: the belief568

of the current mapping is worse than the actual one because part of the569
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body is believed to exit the FoV; thus the policy continues collecting data to570

complete the body coverage even if they are not necessary.571

In test #7 the policy confirms to be robust to combined uncertainties in572

the state estimation, leading to a good mapping of the object, but with a573

rise of data acquired with respect to absence of uncertainties. The considered574

uncertainties are in line with a realistic scenario and the AI-policy is verified575

to outperform a classical UNI scheduling in terms of amount of data and in576

relation to images quality.577

6.2. Computational cost preliminary assessment578

A computational analysis is addressed to determine the feasibility and579

limits of a possible on-board implementation of the algorithm. The algorithm580

is implemented in MATLAB and all tests are run on an Intel® CoreTM i7-581

5500U CPU, clocked at 2.4 GHz, paired to a 16 GB DDR3 memory.582

Computational time for a global mapping case. The computational time to583

take a single decision is evaluated over 500 runs - i.e. the ideal number of584

images for an episode - considering a 1000 facets spherical shape model and585

a typical case in which 1.5 % of the surface is in view. Results in Table 4 and586

Fig. 11 show that a low computational time is required, with a mean value587

of 33.5 ms.588

Surface in view: percentage variation. Another analysis was performed, to589

examine the computational cost trend with respect to the percentage of sur-590

face in view. All other parameters are kept as before. The mean time linearly591

increases with the surface portion, as shown in Fig. 12, where each point is592

the mean computational time over 500 decisions. The mean time can be593
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Table 4: Computation time to take a single decision, with 1.5% of the surface in view, 500

runs.

Time [ms]

Average 33.5

Minimum 7.4

Maximum 132.5

Figure 11: Computation time to take a sin-

gle decision. Time with 1.5% of the surface

in view, 500 runs.

Figure 12: Computation time to take a sin-

gle decision, varying the surface portion in

view.
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about two orders of magnitude larger when the surface portion in view is594

above the 30 %.595

Implementation on flight hardware would corresponds to increased com-596

putation time, potentially introducing a certain delay in the decision making.597

The effect of such a delay would be the imaging of a slightly different area598

with respect to the expected one, due to the target rotation and the spacecraft599

dynamics. For a hypothetical fast rotating spherical body with 2 h rotational600

period, the surface displacement in 1 s is of about the 0.1 % of the character-601

istic dimension. If the surface portion in view is large, such displacement is602

likely not significant; while for a small area in view the computational time603

is minimum. Similar considerations hold considering the specific spacecraft604

dynamics.605

7. Conclusion606

In conclusion, an AI-based planning policy for enhancing the mapping of607

an asteroid or comet is here proposed. Achieved results of the presented ap-608

proach reveal the methodology to be a promising step forward in autonomous609

operations, helping in decreasing the human effort during the mapping phases610

of unknown small bodies and increasing imaging exploitation efficiency with611

a simple and flexible scheme. The merits of the proposed architecture are612

the decoupling of the decision-making process from spacecrafts dynamics, the613

autonomy improvement with very low risks for the mission, and the general614

validity of the planning framework, which is mission-independent and does615

not require learning during operations. The DRL-based strategies generaliz-616

ing capabilities are verified through numerical simulations, obtaining promis-617
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ing results. Two results are consequent to the application of the DRL-based618

policy: an increased performance mapping efficiency and a correct handling619

of memory storage during the mapping. The strategy robustness to uncer-620

tain inputs coming from the on-board navigation is tested, confirming its621

suitability for a realistic scenario. Future work will further investigate the622

effectiveness of the proposed techniques with more challenging benchmarks623

cases.624
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