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Artificial Intelligence applications in space
Introduction

The use of Artificial Intelligence in space applications is attractive:
▶ Growing number of spacecraft with ground communication bottleneck;
▶ Increasing complexity of operative scenarios non necessarily compatible with communication delay

and scheduling in uncertain environment.

Wide spectrum of possible applications:
Earth Observation

▶ Onboard autonomous data
preprocessing for bandwidth
optimisation

Spacecraft GNC
▶ Vision-based navigation
▶ Hazard Detection and

Avoidance
▶ Automatic control policy

adaptation

Failure detection
▶ Early detection of anomalies
▶ Onboard failure recovery

without waiting for next comm
window
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Limitations of Artificial Neural Networks
Introduction

▶ State-of-the-art deep Neural
Networks are made up by long
stacks of layers.

▶ Hardware high efficiency is based
on batched computation.

▶ Memory, power, and energy
requirements limits the
applicability of such systems in
space.

▶ Energy is the most limiting
factor.

0Image credits: M.M. Leonardo, et al., "Deep Feature-Based Classifiers for Fruit Fly Identification (Diptera: Tephritidae)", 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI).
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Spiking Neural Networks – Attractiveness
Introduction

▶ Spiking Neural Networks are based on neuron models
that exchange information by means of discrete spikes.

▶ The neuron has an internal dynamic and accumulates
presynaptic spikes in and internal state (the
voltage/potential).

▶ As the potential reach a certain threshold, it resets to the
initial value and the neuron emits a spike.

▶ The computation is inherently sparse (no computation is
performed if there are not incoming spikes).

▶ Since spikes are binary, the required operation is just an
accumulate operation instead of Multiply-and-ACcumulate.

▶ Potential energy saving by orders of magnitude.
▶ Even better with neuromorphic hardware, tailored for

sparse, asynchronous computation.
Image credits: J. K. Eshraghian et al., “Training Spiking Neural Networks using lessons from Deep Learning.” arXiv [Preprint] arXiv:2019.12894 2021.
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Spiking Neuron model
Introduction
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Spiking Neural Networks – Current Limitations
Introduction

▶ There is no standard way to train SNN.

▶ Spikes are non-differentiable, making traditional backpropagation not directly
applicable to SNN training.

▶ There is no unique method to encode information in spikes.

▶ ANN to SNN conversion methods exist, relying to rate-based coding, but with
certain drop in performance (accuracy).

▶ State-of-the-art accuracy can be recovered increasing the network latency, but
losing part of the energy gain (since more spikes are emitted).
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Information encoding in Spiking Neural Networks
Approach

Rate coding

▶ Most common encoding.
▶ Information is encoded in the

fire rate of the neuron.

Phase coding

▶ Information is encoded in the
phase of the spikes w.r.t. a
global oscillator signal.

Burst coding

▶ Information is carried in the
number of spikes and in the
inter-spike interval.

▶ Most robust to synaptic noise.

Temporal coding

▶ Information is encoded in the
time of the first spike arrival.

▶ earlier = more relevant.

0Image credits: S. Park, et al., “T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding.” arXiv, 2020. doi: 10.48550/arXiv.2003.11741.
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Temporal coding
Approach

▶ Temporal coding tends to use less spikes than
other methods.

▶ It can be combined with models of neurons
which spike once at most, further limiting the
number of spikes.

▶ Time-To-First-Spike (TTFS) coding: to
express numeric values, the value expressed is
encoded in the time of the arrival of the first
spike (the higer the value, the lower the time).

▶ Rank Order Coding: for classification purposes,
only the order of the received spikes matter, not
the specific time.

▶ Comparison on benchmark tasks shows it is the
most efficient for power consumption.

Image credits: W. Guo, et. al., “Neural Coding in Spiking Neural Networks: A Comparative
Study for Robust Neuromorphic Systems,” Frontiers in Neuroscience, vol. 15, p. 212, 2021,
doi: 10.3389/fnins.2021.638474.
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Project Objectives
Approach

Project Objectives
▶ Perform a preliminary investigation of the potential benefits of SNNs based on

temporal coding for onboard AI applications.

▶ SNN models are compared in terms of accuracy and complexity.

▶ Proper training algorithms for the SNN models evaluated and selected.

▶ Establish a method to perform hardware-agnostic, relative comparison of the
computational load required by different architectures, both SNNs and ANNs.

▶ Highlight the possible advantages and drawbacks of SNN models compared to ANN.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo
25/09/2023 – ESA/ESTEC – Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification 8/26



Project Objectives
Approach

Case study: EuroSat dataset (land use classification)
▶ Reference dataset for scene classification

representative of a plausible use case in the Earth
Observation field.

▶ The activity presented in this report focuses on the
RGB EuroSAT dataset.

▶ Image format: 8 bit, 3 × 64 × 64 px (c, h, w) in size.
▶ 27 000 images, divided in 10 classes each one

represented by a number of samples between 2000
and 3000.

▶ 70/20/10 (training, validation, test) split adopted
for the training and cross-validation.

▶ Random horizontal and vertical flip as only data
augmentation at training.

Image credits: P. Helber, et al., “EuroSAT: A Novel Dataset and Deep Learning
Benchmark for Land Use and Land Cover Classification.” arXiv, 2019 doi:
10.48550/arXiv.1709.00029.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo
25/09/2023 – ESA/ESTEC – Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification 9/26



Spiking Neural Networks training approach 1/4
Approach

ANN-to-SNN conversion:
▶ The training is performed on a standard ANN that is then converted to SNN.
▶ High precision activation function converted in spike rate or latency code.
• Leverage standard, state-of-the-art, backpropagation techniques.
• Maintaining high precision requires long number of time steps, losing energy efficiency.
• The result approximate the original ANN (unlikely to match the performance).

Local learning rules:
▶ Weights updates are a function of signals that are spatially and temporally local to the weight, rather

than a global signal as in error backpropagation (e.g. Spike Timing Dependent Plasticity, STDP).
▶ Biologically inspired.
• Lightweight, unsupervised learning.
• Requires a classifier at output, or complex reward mechanisms.
• Currently they struggle to achieve high accuracy.
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Spiking Neural Networks training approach 2/4
Approach

Backpropagation using spike times
▶ Instead the spikes, the derivative of the spike times is used.
▶ Spike times are a continuous variable (differently w.r.t. spikes themselves).

• Successfully overcome the discontinuity problem without approximations.

• Every neuron must spike to enter training (no solution exists if a neuron does not spike).

• Can enforce stringent priors to the network.

• Derivatives need to be rewritten for every specific neuron model.
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Spiking Neural Networks training approach 3/4
Approach

Surrogate Gradient (SG):
▶ Generalised backpropagation algorithm is

applied to the unrolled computational
graph (backpropagation through time,
BPTT).

▶ At the forward pass, the Heaviside
operator H(x) is applied to determine
whether the neuron spikes.

▶ At the backward pass, H(x) is substituted
by a continuous function whose derivative
is used as substitute of the discontinuous
gradient.

0Image credit: E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, Nov. 2019, doi: 10.1109/MSP.2019.2931595.
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Spiking Neural Networks training approach 4/4
Approach

Surrogate Gradient selected for training with SuperSpike1 (a fast sigmoid) as surrogate function.

• Not dependent on a specific neuron model.
• Not dependent on the type of encoding.
• Can leverage traditional deep learning libraries (PyTorch, Tensorflow).
• Large memory consumption and slow training (due to the unrolling in time).

Models are tested in PyTorch2 with the Norse3 library.
1F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks,” Neural Computation, vol. 30, no. 6, pp. 1514–1541, Jun. 2018, doi: 10.1162/neco_a_01086.
2https://pytorch.org/
3C. Pehle and J. E. Pedersen, “Norse - A deep learning library for spiking neural networks.” Oct. 2021. url: https://github.com/norse/norse
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Input encoding
Approach

Constant current encoder
Numeric values from RGB images can be converted in binary spikes train, both rate and temporal-based,
by just simply supplying them as constant current to the suitable neuron model.

Other encoder models exist (e.g. the Poisson encoder translates pixel intensity in a likelihood to
spike by a random spiking neuron).

Learnable encoder
▶ A convolution layer can be placed before the conversion in spikes.
▶ Can be applied to different encoder types.
▶ In this way the network is capable to learn its own encoder.
▶ Such layer is appropriately taken into account in the energy estimation.
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Neuron types
Approach

Looking for extremely efficient systems, bio-plausibility is not sought. Most simple neurons model are used.
Leaky Integrate and Fire (LIF)

▶ Most popular neuron model.
▶ Exponentially decay both current and voltage.
▶ used for rate-coded test cases.
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▶ Used for latency-coded test cases.
▶ Stepwise current, linear potential.
▶ Set to fire once at most.
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Output layers
Approach

Ad hoc readout layers are used to output differentiable spike rates and times to exploit autodiff capabilities.

Leaky Integrator
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▶ Standard for rate based networks.
▶ Accumulate incoming spikes.
▶ Maximum of last time step value taken as

readout value.

Spike time readout layer
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▶ Used for tmporal coded networks.
▶ Integrate time until a spike is received.
▶ Differentiable to enable backpropagation.
▶ Developed for Ariadna activity.
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Benchmark architectures
Approach

▶ Benchmark architectures are established for test cases.
▶ Neuron models and layers parameters are varied.

Convolutional Neural Network
▶ VGG style with convolutional current encoder.
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Performance Metrics: EMAC per inference 1/3
Approach

Energy consumption is due to two factors:

Etot = sesyn + nTeupd

Synaptic operations
▶ esyn energy per synaptic operation.
▶ s number of synaptic operations.

Neuron updates
▶ eupd energy per neuron update.
▶ n number of neurons in the network.
▶ T number of time steps.

Number of synaptic operations
s can be estimated per layer in function of the
spiking rate f :

s(l) = ns(l) nn(l) f(l−1)

▶ ns(l) number of synapse per neuron
▶ nn(l) number of neuron in the layer

Recurrent layer case:

sr(l) = ns(l) nn(l) f(l)
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Performance Metrics: EMAC per inference 2/3
Approach

esyn and eupd are evaluated on the specific neuron model:

IFL :


ĩk+1 = ĩk +

∑nS

j=1 w̃jSjk + b̃

vk+ 1
2

= vk + ĩk+1

vk+1 = vk+ 1
2

− vthSk+1

LIF ;


ik+1 = ik − ik

∆t

τsyn
+

∑nS

j=1 wjSjk + b

vk+ 1
2

= vk + (ik+1 − vk) ∆t

τmem
vk+1 = vk+ 1

2
− vthSk+1

1 The discrete-time neuron model is written;
2 Single operations are identified by stage: synaptic ops/neuron upd;
3 Type of operation (AC/MAC) are identified;
4 Different contributions are summed in esyn and eupd assuming 1MAC = 1EMAC and

1AC = 0.667EMAC.

IFL:
{

esyn = 1 AC = 0.667 EMAC
eupd = 2 AC = 1.333 EMAC LIF:

{
esyn = 1 AC = 0.667 EMAC
eupd = 2 AC + 2 MAC = 3.333 EMAC

AC AC

AC
MAC

AC AC

AC+MAC
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Performance Metrics: EMAC per inference 3/3
Approach

Assumption
Memory operations dominate the cost of the computation.

1 MAC = 3/2AC

▶ Agnostic w.r.t. the hardware (but can be tuned to target specific platform).
▶ Capable to compare both ANNs and SNNs.
▶ Takes into account different neuron models.
▶ Differentiate neuron update and synaptic operations.
▶ Finer estimation w.r.t. to raw number of emitted spikes.
▶ Conservative in estimate SNN load.
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Accuracy vs Energy (EMAC/inf)
Results

▶ 73 test cases, with benchmark
architectures (ANNs, SNNs
both time and rate based).

▶ SNN are capable to reach
similar accuracy to standard
ANNs with a fraction (20 %
to 50 %) of the
EMAC/inference.

Test cases main groups:
A) ANN – MLP, limited receptive field;
B) ANN – MLP;
C) ANN – CNN;
D) SNN – MLP, TTFS encoding, IF neuron;
E) SNN – CNN, TTFS encoding, IF neuron;
F) SNN – MLP, rate encoding, LIF neuron;
G) SNN – CNN, rate encoding, LIF neuron.
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EMAC/inf as proxy for energy consumption
Results
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determining energy consumption, even
with same number of spikes.
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Batch Normalisation Through Time
Results

▶ Batch Normalisation Through
Time (BNTT) proved effective
in network regularisation.

▶ It is the same as standard BN,
except that:

■ Mean and variance
computation executed
independently at each time
step;

■ The hyperparameter γ is
learnt at training;

■ No offset term is used
(redundant with the layer
bias).

BNTT(xt
i) = γtx̂t

i, x̂t
i = xt

i − µt
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SNNs model scaling
Results

▶ As network complexity increases, the overall
accuracy starts to drop.

▶ Information does not flow correctly between
layers: late layers spike basing on incomplete
information from the previous ones.

▶ Possible causes:
■ Limited number of time steps at training.
■ Limited size of the batch induce

malfunctioning of regularisation methods (i.e.
BNTT).

▶ Both factors provoked by bad scaling of
memory consumption at training, due to the
network unrolling in time required by SG.
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(b) Case P039 – suboptimal.
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(c) Case P033 – suboptimal.
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(d) Case P012 – failed.
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Conclusions
Results

▶ A preliminary investigation of the potential benefits of SNNs based on temporal coding for
onboard AI applications in space was carried out.

▶ EMAC per inference used to compare the computational load in a hardware-agnostic way.
▶ Benchmark SNN models, both latency and rate based, exhibited a minimal loss in

accuracy, compared with their equivalent ANNs, with significantly lower (from −50 % to
−80 %) EMAC per inference.

▶ An even larger improvement can be expected with SNNs implemented on
neuromorphic HW.

▶ SG proved effective in training SNNs, but scaling to very deep architectures is still an
issue.

Overall, SNNs are a competitive candidate to achieve autonomy in space systems.
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Future research
Results

▶ A research effort is still needed, looking for architectures, regularisation techniques, and
initialisation methods capable to exploit the peculiarities of latency-based SNNs.

▶ Recently proposed innovative training algorithms, which try to overcome the bottleneck
of BPTT (i.e. Forward Propagation Through Time) should be investigated.

▶ Future works should also explore sensitivity of event-based HW to space environment, to
identify disturbance models enabling robustness even in presence of input or synaptic
noise.
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