

POLITECNICO MILANO 1863

DIPARTIMENTO DI SCIENZE E TECNOLOGIE AEROSPAZIALI

Ariadna Study Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification Final presentation

Paolo Lunghi ¹

Stefano Silvestrini ¹ Dominik Dold ² Gabriele Meoni ² Dario Izzo

¹Politecnico di Milano, Aerospace Science and Technology Department ²ESA ACT

25/09/2023 - ESA/ESTEC, Noordwijk, The Netherlands

Introduction Artificial Intelligence applications in space

The use of **Artificial Intelligence in space applications** is attractive:

Growing number of spacecraft with ground communication bottleneck;

Spacecraft GNC

Avoidance

adaptation

Increasing complexity of operative scenarios non necessarily compatible with communication delay and scheduling in uncertain environment.

Vision-based navigation

Hazard Detection and

Automatic control policy

Wide spectrum of possible applications:

Earth Observation

 Onboard autonomous data preprocessing for bandwidth optimisation

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

25/09/2023 - ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

Failure detection

- Early detection of anomalies
- Onboard failure recovery without waiting for next comm window

POLITECNICO MILANO 1863

1/26

- State-of-the-art deep Neural Networks are made up by long stacks of layers.
- Hardware high efficiency is based on batched computation.
- Memory, power, and energy requirements limits the applicability of such systems in space.
- **Energy** is the most limiting factor.

⁰Image credits: M.M. Leonardo, et al., "Deep Feature-Based Classifiers for Fruit Fly Identification (Diptera: Tephritidae)", 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

- Spiking Neural Networks are based on neuron models that exchange information by means of discrete spikes.
- The neuron has an internal dynamic and accumulates presynaptic spikes in and internal state (the voltage/potential).
- As the potential reach a certain threshold, it resets to the initial value and the neuron emits a spike.
- The computation is inherently sparse (no computation is performed if there are not incoming spikes).
- Since spikes are binary, the required operation is just an accumulate operation instead of Multiply-and-ACcumulate.
- > Potential energy saving by orders of magnitude.
- Even better with neuromorphic hardware, tailored for sparse, asynchronous computation.

Image credits: J. K. Eshraghian et al., "Training Spiking Neural Networks using lessons from Deep Learning." arXiv [Preprint] arXiv:2019.12894 2021.

Introduction Spiking Neuron model

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

POLITECNICO MILANO 1863

- ▶ There is no standard way to train SNN.
- Spikes are non-differentiable, making traditional backpropagation not directly applicable to SNN training.
- ► There is no unique method to **encode information** in spikes.
- ► ANN to SNN conversion methods exist, relying to **rate-based coding**, but with certain drop in performance (accuracy).
- State-of-the-art accuracy can be recovered increasing the network latency, but losing part of the energy gain (since more spikes are emitted).

^{25/09/2023 -} ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

Approach Information encoding in Spiking Neural Networks

Most common encoding.

Information is encoded in the fire rate of the neuron.

Phase coding

 Information is encoded in the phase of the spikes w.r.t. a global oscillator signal.

Burst coding

- Information is carried in the number of spikes and in the inter-spike interval.
- Most robust to synaptic noise.

Temporal coding

Time-to-

first-spike

Codina

Type

- Information is encoded in the time of the first spike arrival.
- earlier = more relevant.

⁰Image credits: S. Park, et al., "T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding." arXiv, 2020. doi: 10.48550/arXiv.2003.11741.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Approach Temporal coding

- Temporal coding tends to use less spikes than other methods.
- It can be combined with models of neurons which spike once at most, further limiting the number of spikes.
- Time-To-First-Spike (TTFS) coding: to express numeric values, the value expressed is encoded in the time of the arrival of the first spike (the higer the value, the lower the time).
- Rank Order Coding: for classification purposes, only the order of the received spikes matter, not the specific time.
- Comparison on benchmark tasks shows it is the most efficient for power consumption.

Image credits: W. Guo, et. al., "Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems," Frontiers in Neuroscience, vol. 15, p. 212, 2021, doi: 10.3389/fnins.2021.638474.

Approach Project Objectives

Project Objectives

- Perform a preliminary investigation of the potential benefits of SNNs based on temporal coding for onboard AI applications.
- SNN models are compared in terms of accuracy and complexity.
- ▶ Proper training algorithms for the SNN models evaluated and selected.
- Establish a method to perform hardware-agnostic, relative comparison of the computational load required by different architectures, both SNNs and ANNs.

► Highlight the possible advantages and drawbacks of SNN models compared to ANN.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Approach **Project Objectives**

Case study: **EuroSat** dataset (land use classification)

- Reference dataset for scene classification representative of a plausible use case in the Earth Observation field
- The activity presented in this report focuses on the RGB EuroSAT dataset.
- Image format: 8 bit, $3 \times 64 \times 64$ px (c, h, w) in size.
- $27\,000$ images, divided in 10 classes each one represented by a number of samples between 2000and 3000.
- 70/20/10 (training, validation, test) split adopted for the training and cross-validation.
- Random horizontal and vertical flip as only data augmentation at training.

(d) Permanent Cron

(e) River

(f) Sea & Lake (g) Herbaceous Vegetation

(h) Highway

(i) Pasture

(i) Forest

Image credits: P. Helber, et al., "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification" arXiv 2019 doi: 10.48550/arXiv.1709.00029

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

ANN-to-SNN conversion:

- ▶ The training is performed on a standard ANN that is then converted to SNN.
- ▶ High precision activation function converted in spike rate or latency code.
- Leverage standard, state-of-the-art, backpropagation techniques.
- Maintaining high precision requires long number of time steps, losing energy efficiency.
- The result approximate the original ANN (unlikely to match the performance).

Local learning rules:

- Weights updates are a function of signals that are spatially and temporally local to the weight, rather than a global signal as in error backpropagation (e.g. Spike Timing Dependent Plasticity, STDP).
- Biologically inspired.
- Lightweight, unsupervised learning.
- Requires a classifier at output, or complex reward mechanisms.
- Currently they struggle to achieve high accuracy.

Backpropagation using spike times

- ▶ Instead the spikes, the derivative of the **spike times** is used.
- ► Spike times are a **continuous** variable (differently w.r.t. spikes themselves).
- Successfully overcome the discontinuity problem without approximations.
- Every neuron **must spike** to enter training (no solution exists if a neuron does not spike).
- Can enforce stringent priors to the network.
- Derivatives need to be rewritten for every specific neuron model.

^{25/09/2023 –} ESA/ESTEC – Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

$\ensuremath{\mathsf{Approach}}$ Spiking Neural Networks training approach 3/4

Surrogate Gradient (SG):

- Generalised backpropagation algorithm is applied to the unrolled computational graph (backpropagation through time, BPTT).
- ► At the **forward pass**, the Heaviside operator *H*(*x*) is applied to determine whether the neuron spikes.
- ► At the backward pass, H(x) is substituted by a continuous function whose derivative is used as substitute of the discontinuous gradient.

⁰ Image credit: E. O. Neftci, H. Mostafa, and F. Zenke, "Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks," IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, Nov. 2019, doi: 10.1109/MSP.2019.2931595.

^{25/09/2023 -} ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

Approach Spiking Neural Networks training approach 4/4

Surrogate Gradient selected for training with SuperSpike¹ (a fast sigmoid) as surrogate function.

- Not dependent on a specific neuron model.
- Not dependent on the type of encoding.
- Can leverage traditional deep learning libraries (PyTorch, Tensorflow).
- Large memory consumption and slow training (due to the unrolling in time).

Models are tested in PyTorch² with the Norse³ library.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

25/09/2023 - ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

orse

PvTorch

¹F. Zenke and S. Ganguli, "SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks," Neural Computation, vol. 30, no. 6, pp. 1514–1541, Jun. 2018, doi: 10.1162/neco_a_01086. ²https://pvtorch.org/

³C. Pehle and J. E. Pedersen, "Norse - A deep learning library for spiking neural networks." Oct. 2021. url: https://github.com/norse/norse

Constant current encoder

Numeric values from RGB images can be converted in binary spikes train, both rate and temporal-based, by just simply supplying them as **constant current** to the suitable neuron model.

Other encoder models exist (e.g. the Poisson encoder translates pixel intensity in a likelihood to spike by a random spiking neuron).

Learnable encoder

- ► A convolution layer can be placed before the conversion in spikes.
- Can be applied to different encoder types.
- ▶ In this way the network is capable to learn its own encoder.
- Such layer is appropriately taken into account in the energy estimation.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

POLITECNICO MILANO 1863

Approach Neuron types

Looking for extremely efficient systems, bio-plausibility is not sought. Most simple neurons model are used.

Leaky Integrate and Fire (LIF)

- Most popular neuron model.
- Exponentially decay both current and voltage.
- used for rate-coded test cases.

Linear Integrate and Fire

- ► Used for latency-coded test cases.
- Stepwise current, linear potential.
- Set to fire once at most.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Approach Output layers

Ad hoc readout layers are used to output differentiable spike rates and times to exploit autodiff capabilities.

Leaky Integrator

- Standard for rate based networks.
- Accumulate incoming spikes.
- Maximum of last time step value taken as readout value.

Spike time readout layer

- Used for tmporal coded networks.
- Integrate time until a spike is received.
- Differentiable to enable backpropagation.
- Developed for Ariadna activity.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Approach Benchmark architectures

- - Benchmark architectures are established for test cases.
 - Neuron models and layers parameters are varied.

Convolutional Neural Network

► VGG style with convolutional current encoder.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

25/09/2023 - ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

Limit Receptive Field Network

- Constant current encoder.
- Mimick convolution by connecting blocks of image to fully conncedted layers.

Approach Performance Metrics: EMAC per inference 1/3

Energy consumption is due to two factors:

 $\mathsf{E}_{\mathsf{tot}} = \underbrace{se_{\mathsf{syn}}} + \underbrace{nTe_{\mathsf{upd}}}$

Synaptic operations

- ► *e*_{syn} energy per synaptic operation.
- ▶ *s* number of synaptic operations.

Neuron updates

- e_{upd} energy per neuron update.
- \blacktriangleright *n* number of neurons in the network.
- ► T number of time steps.

Number of synaptic operations

 \boldsymbol{s} can be estimated per layer in function of the spiking rate f:

$$s_{(l)} = n_{s(l)} n_{n(l)} f_{(l-1)}$$

- $n_{s(l)}$ number of synapse per neuron
- $n_{n(l)}$ number of neuron in the layer Recurrent layer case:

$$s_{r(l)} = n_{s(l)} n_{n(l)} f_{(l)}$$

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Approach Performance Metrics: EMAC per inference 2/3

 $e_{\rm syn}$ and $e_{\rm upd}$ are evaluated on the specific neuron model:

$$IFL: \begin{cases} \tilde{i}_{k+1} = \tilde{i}_{k} + \underbrace{\sum_{j=1}^{n_{S}} \tilde{w}_{j}S_{jk}}_{\text{AC}} + \underbrace{\tilde{b}}_{\text{AC}} \\ v_{k+\frac{1}{2}} = v_{k} + \underbrace{\tilde{i}_{k+\frac{1}{2}}}_{v_{k+1}} \\ v_{k+1} = v_{k+\frac{1}{2}} - \underbrace{v_{\text{th}}S_{k+1}} \end{cases}$$

$$LIF; \begin{cases} i_{k+1} = i_k - \underbrace{i_k \frac{\Delta t}{\tau_{\text{sym}}} + \sum_{j=1}^{n_S} w_j S_{jk}}_{\text{AC}} + \underbrace{b}_{\text{AC}} \\ v_{k+\frac{1}{2}} = v_k + \underbrace{(i_{k+1} - v_k) \frac{\Delta t}{\tau_{\text{mem}}}}_{v_{k+1} = v_{k+\frac{1}{2}} - \underbrace{v_{\text{th}} S_{k+1}} \end{cases}$$

- 1 The discrete-time neuron model is written;
- 2 Single operations are identified by stage: synaptic ops/neuron upd;
- **3** Type of operation (AC/MAC) are identified;
- IDifferent contributions are summed in e_{syn} and e_{upd} assuming 1MAC = 1EMAC and 1AC = 0.667EMAC.

IFL:
$$\begin{cases} e_{syn} = 1 \text{ AC} = 0.667 \text{ EMAC} \\ e_{upd} = 2 \text{ AC} = 1.333 \text{ EMAC} \end{cases}$$
 LIF:
$$\begin{cases} e_{syn} = 1 \text{ AC} = 0.667 \text{ EMAC} \\ e_{upd} = 2 \text{ AC} + 2 \text{ MAC} = 3.333 \text{ EMAC} \end{cases}$$

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izz-

Assumption	
	Memory operations dominate the cost of the computation.
	$1 \operatorname{MAC} = 3/2\operatorname{AC}$

- ► Agnostic w.r.t. the hardware (but can be tuned to target specific platform).
- Capable to compare both ANNs and SNNs.
- Takes into account different neuron models.
- ► Differentiate neuron update and synaptic operations.
- ▶ Finer estimation w.r.t. to raw number of emitted spikes.
- Conservative in estimate SNN load.

Results Accuracy vs Energy (EMAC/inf)

- 73 test cases, with benchmark architectures (ANNs, SNNs both time and rate based).
- SNN are capable to reach similar accuracy to standard ANNs with a fraction (20% to 50%) of the EMAC/inference.

Test cases main groups:

- A) ANN MLP, limited receptive field;
- B) ANN MLP;
- C) ANN CNN;
- D) SNN MLP, TTFS encoding, IF neuron;
- E) SNN CNN, TTFS encoding, IF neuron;
- F) SNN MLP, rate encoding, LIF neuron;
- G) SNN CNN, rate encoding, LIF neuron.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Results EMAC/inf as proxy for energy consumption

EMAC/inf increases with the number of spikes, but it is only a general trend.

Synaptic operations play a crucial role in determining energy consumption, even with same number of spikes.

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

25/09/2023 - ESA/ESTEC - Ariadna Study: Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification

nantic ons

Results Batch Normalisation Through Time

- Batch Normalisation Through Time (BNTT) proved effective in network regularisation.
- It is the same as standard BN, except that:
 - Mean and variance computation executed independently at each time step;
 - The hyperparameter γ is learnt at training;
 - No offset term is used (redundant with the layer bias).

$$BNTT(x_i^t) = \gamma^t \hat{x}_i^t, \ \hat{x}_i^t = \frac{x_i^t - \mu_{\mathcal{B}}^t}{\sqrt{\sigma_{\mathcal{B}}^{2\,t} + \epsilon}}$$

- The trend of γ after training shows that a temporal pattern is identified.
- The temporal receptive field of each layer can also be easily identified.

- Best results: spatial BNTT.
- Increased accuracy and more efficient network usage (less energy even with same spikes).

POLITECNICO

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

Results SNNs model scaling

- As network complexity increases, the overall accuracy starts to drop.
- Information does not flow correctly between layers: late layers spike basing on incomplete information from the previous ones.
- Possible causes:
 - Limited number of time steps at training.
 - Limited size of the batch induce malfunctioning of regularisation methods (i.e. BNTT).
- Both factors provoked by bad scaling of memory consumption at training, due to the network unrolling in time required by SG.

POLITECNICO MILANO 1863

P. Lunghi, S. Silvestrini, D. Dold, G. Meoni, D. Izzo

- A preliminary investigation of the potential benefits of SNNs based on temporal coding for onboard AI applications in space was carried out.
- **EMAC per inference** used to compare the computational load in a hardware-agnostic way.
- ▶ Benchmark SNN models, both latency and rate based, exhibited a minimal loss in accuracy, compared with their equivalent ANNs, with significantly lower (from -50% to -80%) EMAC per inference.
- An even larger improvement can be expected with SNNs implemented on neuromorphic HW.
- SG proved effective in training SNNs, but scaling to very deep architectures is still an issue.

Overall, SNNs are a competitive candidate to achieve autonomy in space systems.

- A research effort is still needed, looking for architectures, regularisation techniques, and initialisation methods capable to exploit the peculiarities of latency-based SNNs.
- Recently proposed innovative training algorithms, which try to overcome the bottleneck of BPTT (i.e. Forward Propagation Through Time) should be investigated.
- Future works should also explore sensitivity of event-based HW to space environment, to identify disturbance models enabling robustness even in presence of input or synaptic noise.

POLITECNICO MILANO 1863

DIPARTIMENTO DI SCIENZE E TECNOLOGIE AEROSPAZIALI

Ariadna Study Investigation of low energy Spiking Neural Networks based on temporal coding for scene classification Final presentation

Paolo Lunghi ¹

Stefano Silvestrini ¹ Dominik Dold ² Gabriele Meoni ² Dario Izzo

¹Politecnico di Milano, Aerospace Science and Technology Department ²ESA ACT

25/09/2023 - ESA/ESTEC, Noordwijk, The Netherlands